
Admission Prediction in Undergraduate
Applications: an Interpretable Deep Learning

Approach

Amisha Priyadarshini
Department of Computer Science

University of California, Irvine
Irvine, CA, USA

apriyad1@uci.edu

Barbara Martinez-Neda
Department of Computer Science

University of California, Irvine
Irvine, CA, USA

barbarm@uci.edu

Sergio Gago-Masague
Department of Computer Science

University of California, Irvine
Irvine, CA, USA

sgagomas@uci.edu

Abstract—This article addresses the challenge of validating the
admission committee’s decisions for undergraduate admissions.
In recent years, the traditional review process has struggled to
handle the overwhelmingly large amount of applicants’ data.
Moreover, this traditional assessment often leads to human
bias, which might result in discrimination among applicants.
Although classical machine learning-based approaches exist that
aim to verify the quantitative assessment made by the application
reviewers, these methods lack scalability and suffer from perfor-
mance issues when a large volume of data is in place. In this
context, we propose deep learning-based classifiers, namely Feed-
Forward and Input Convex neural networks, which overcome
the challenges faced by the existing methods. Furthermore,
we give additional insights into our model by incorporating
an interpretability module, namely LIME. Our training and
test datasets comprise applicants’ data with a wide range of
variables and information. Our models achieve higher accuracy
compared to the best-performing traditional machine learning-
based approach by a considerable margin of 3.03%. Additionally,
we show the sensitivity of different features and their relative
impacts on the overall admission decision using the LIME
technique.

Index Terms—undergraduate admissions, machine learning,
deep neural networks, LIME, input convex neural networks.

I. INTRODUCTION

In recent decades, the undergraduate admission processes

have witnessed significant transformations aimed at fostering

fairness and equal opportunities for applicants. These changes

are evident in the education system of the University of

California (UC), which includes eliminating the consideration

of race and gender, implementing the percentage plans to

recognize the top-performing students, and removing stan-

dardized testing along with the holistic review approach,

which considers factors beyond the academic achievements of

applicants. Integrating machine learning (ML) techniques in

the undergraduate admissions decision-making process could

ensure fairness by eliminating any human bias and prejudices

that may inadvertently influence otherwise. Automating cer-

tain aspects of the decision process using ML models could

also significantly enhance overall efficiency by saving time

and resources for the admissions staff. Articles [1] and [2]

showcase two such software implementations of classical ML

tools which could be used for the admission process and

analyze the hidden patterns in the corresponding datasets.

Another advantage of using ML classifiers is that they pro-

vide scalable solutions to tackle the increased workload by

handling the increasing number of applications while ensuring

every application’s thorough and timely review. In support of

our assertions, [3] explores the applicability and viability of

classical ML models in the undergrad admissions process.

The extensive simulation studies and findings thereof have

led the way to multiple follow-up works like investigating

the performance of state-of-the-art classifiers, such as Deep

Neural Networks (DNN), for undergraduate admissions.

Deep learning (DL) has emerged as a powerful tool in

various fields, from demonstrating their potential in under-

standing complex data to revolutionizing the decision-making

process. While classical ML models have shown promise, their

performance in admission decisions may still be limited by

their inability to capture intricate relationships within high-

dimensional data. In contrast, DL models, with their multi-

layer architecture, can learn hierarchical representations and

are hence well suited for extracting meaningful information

from complex and diverse applicant data. Furthermore, the

flexibility and adaptability of DNNs make them suitable for

handling the dynamic nature of admissions data.

Given the success of DNN models, the investigation of

transparency, fairness, and bias, concerning the domain of

the admission decision process, still remains an active re-

search area. To ensure the interpretability and explainability

of the predictions obtained from the DNN models, we explore

the Local Interpretable Model-agnostic Explanations (LIME)

technique [4] coupled with a gradient-based approach. This

could help extract invaluable information to understand an

applicant’s specific attributes and characteristics that heavily

influence admission decisions.

For the paper, we have considered 4,442 application records

of California freshman applicants for the Fall 2021 cycle to the

Department of Computer Science at UC, Irvine. The dataset

encompasses a range of variables, including demographics,
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Figure 1: Visual representation of deep neural network architectures, (a) Feed-Forward neural network; (b) Input convex neural

network.

academic records, high school information, and essay question

responses. Using the Python-based PyTorch framework, we

have trained the datasets on two different architectures of

DNN models, namely Feed-Forward (FF) Neural Networks

and Input Convex Neural Networks (ICNN). Additionally, we

have incorporated the LIME technique to offer interpretability

and explanations for the predictions made by the DNN models.

By presenting our findings, we aim to contribute to the existing

body of knowledge on leveraging DNN models in undergrad-

uate admission decisions while upholding the holistic review

process.

II. RELATED WORKS

The use of ML models is gaining significant attention in

recent years. However, a few studies have investigated the

application of ML algorithms to predict and enhance the accu-

racy of admission decisions. Most of the studies conducted so

far have focused on the graduate admission process, empha-

sizing on factors such as Undergrad Cumulative Grade Point

Average (CGPA), Research, and Vacancies at research groups

but there is a lack of research on undergraduate admissions

which requires a broader evaluation of application aspects. For

instance, [5] and [6] have conducted studies using supervised

learning techniques where the sole focus is on standardized

testing approaches for training the models while lacking

transparency in their prediction explanations. In another line

of work [1] and [2], depict the development of ML tools for

predicting post-graduate and graduate admissions respectively.

The former was discarded because of non-updated training

data and counterproductive approach towards campus diversity

[7]. Another study [8] talks regarding the bias in admission

predictions, which we have tried to address in our study.

Apart from that, [9] and [10] conducted study using Deep

neural models with the latter using three different frameworks.

Both papers did not explore any interpretation techniques that

could be deployed to understand the model’s predictions and

also, in turn, preserve transparency. Furthermore, [11] focuses

on machine learning-based prediction for graduate admissions

but the scarce number of training data samples make the

predictions unreliable.

III. METHODOLOGY

This section provides an overview of the methodology,

starting with data preprocessing, neural network training, and

incorporating the LIME model for interpretability.

A. Data preprocessing
To facilitate the training of deep learning models and assess

their performance in a comparison study with the classical

machine learning models, we have obtained and pre-processed

information on 4,442 applications to the CS department at

UC, Irvine. The dataset used in this study comprises several

categories of information, including the student Grade Point

Average (GPA), Advanced Placement (AP) test scores, partic-

ipation in educational programs, and responses to admission-

related questions. Some dependent variables are demographic

information, academic history, high school attended, and the

responses to selected Personal Insight Questions (PIQs) [12].
Given the problem we are trying to solve is a binary

classification task, the final read score is assigned as the

target variable, representing the review score assigned to every

applicant. For this task, the top review score is mapped to 1,

and the lower scores are mapped to 0. The records missing

a final read score value are excluded from the analysis to

ensure the efficacy of the model training and performance

evaluation. Next, to enhance the effectiveness of the model

training process, any records with high school attendance

outside California are excluded, considering that California

applicants provide a wider range of potential information

compared to out-of-state ones. Also, the records missing any

numerical data are dropped from the dataset, provided its high

importance for the classification task. Following Proposition

209, we have dropped features like gender and ethnicity.

Features like primary major value consist of string entries,

which are transformed into new binary columns after one-hot

encoding, indicate the presence or absence of the respective

values from the original feature. Students were allowed to

choose four PIQs to respond to from a collection of eight,

which are later used to extract necessary information. TextBlob

[13] and textstat [14] libraries have been employed to extract

the information from the PIQs.

136

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 17,2024 at 21:31:48 UTC from IEEE Xplore.  Restrictions apply. 



After obtaining a tabular dataset, we handle the missing

entries by the method of median imputation, where the missing

values are replaced with the corresponding feature’s median

value. This ensures robustness to outliers or extreme values

and helps preserve the variable’s overall distribution. This step

is followed by data normalization, which transforms the data

to have zero mean and unit variance. It, in turn, prevents

feature dominance and improves performance by ensuring data

convergence for gradient-based optimizations performed in a

neural network. Subsequently, data scaling was performed to

map the normalized data to the range of [0, 1], which is

beneficial for algorithms relying on specific input ranges, like

the DNN models.

B. Neural Network Training

In the paper, we focus on two different neural network

architectures, namely Feed-Forward (FF) and Input convex

neural networks (ICNN), for predicting undergraduate admis-

sion decisions.

1) Feed-Forward Neural Network: The Feed-Forward neu-

ral network is a fundamental architecture where the informa-

tion propagates within the network in a unidirectional manner,

originating from the input layer and progressing towards the

output layer. The network lacks any recurrent or feedback

loops. We consider a three-layered architecture or a deep neu-

ral network with two hidden layers for the binary classification

problem. The proposed FF architecture is illustrated in Figure

1(a). For an FF neural network, its input is a state vector and

its output is a scalar value.

Definition 1 (Feed-Forward Predicted Output). The predicted

output of the network, p, is defined as follows,

p = softmax[ tanh(W2. ReLU(W1.x+ b1) + b2)]

where W1 and W2 are the weight vectors and, b1 and b2 are

the bias vectors respectively, and x is the input to the network.

We use tanh and ReLU activation functions on the first and

second hidden layers, respectively. Despite using the softmax

activation function on the output layer of a binary classifi-

cation problem, it has shown a tremendous improvement in

the model’s performance along with the cross-entropy loss

function.

This architecture enables the network to learn the hier-

archical representations of the input data. We employ the

ADAM [15] optimizer which is a first-order gradient-based

optimization technique to update the weights and bias based

on the calculated gradients of the loss function accordingly.

2) Input Convex Neural Network: The second type of

architecture used for the study is the ICNN, a scalar-valued

neural network with constraints on its parameters or weights

such that the output of the network is a convex function

of the inputs [16]. The architecture ensures convexity, a

fundamental concept in the optimization theory that allows

efficient and reliable optimization, explicitly capturing the

convex relationships between the input variables. For the study,

we have considered a fully connected Input Convex neural

network (FICNN) consisting of several passthrough layers.

The significance of including passthrough layers between the

hidden layers can be beneficial to preserving the convexity of

the input space while allowing the neural network to perform

non-linear transformations to understand the complex patterns

in data. An illustration of the said model is provided in Figure

1(b).

Definition 2 (FICNN Predicted Output). Say, f(x; θ) is the

scalar-valued neural network where x denotes the input to the

function and θ are the parameters such that the network, f , is

convex to the input x. In order to understand the predictions,

the layer-wise output is calculated as,

zi+1 = gi(Ui.zi +Wi.x+ bi)

where Wi are the real-valued weights mapping from inputs to

the i + 1 layer activations; Ui are positive weights mapping

previous layer activations zi to the next layer; bi are the real-

valued bias terms; and gi are convex, monotonically non-

decreasing non-linear activation functions for every i repre-

senting the training samples. Then the predicted output of the

network could be defined as follows,

p = g(x) ≡ zk

where k signifies the number of layers in the network.

Furthermore, we incorporate the Dropout regularization

technique in the architecture, enhancing the model general-

ization and robustness to noise and variation in the input

data, simultaneously reducing model sensitivity. The network

imposes constraints to preserve the convexity with respect

to the input, which ensures the output has convex regions

in the input space. The significance of the model lies in its

ability to preserve convexity leading to more reliable solutions,

and helps facilitate optimization to yield higher performance

metrics.

3) Principal Component Analysis: In the next step, we

incorporate the Principal Component Analysis (PCA) with

both the neural network architectures discussed to check for

any significant improvement in the model prediction. PCA is a

dimensionality reduction technique implemented to transform

a high-dimensional dataset into a low-dimensional one while

preserving the important features. The technique is applied

to address the challenges associated with high-dimensional

datasets, potentially improving the model’s performance and

robustness to noise and redundancy.

C. Prediction Interpretability using LIME

Local Interpretable Model-agnostic Explanations (LIME) is

a technique used to interpret the predictions of complex ML

models like deep neural networks. It is particularly used when

the ML model’s inner workings are opaque or difficult to

interpret. Being a model-agnostic method, it tries to learn the

underlying behavior of the ML model by perturbing the input

and observing the changes in the model predictions. As the

LIME model is only capable of providing local explanations

by approximating the behavior of the ML model in the vicinity
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Table I: Performance metrics for deep neural network models

Neural Network Model Architecture Accuracy Precision Recall F1-Score AU-ROC Score
Feed-Forward Neural Network 0.8056 0.8159 0.7883 0.8018 0.8056

Feed-Forward Neural Network with PCA 0.8067 0.8000 0.8073 0.8037 0.8068

ICNN 0.8067 0.8281 0.7961 0.8118 0.8073
ICNN with PCA 0.8056 0.8248 0.7983 0.8113 0.8060

of a data instance, we have tried to adopt a slightly different

technique to improve the transparency of model predictions

by generalizing them over a broader spectrum of testing

samples. To cascade over the limitation, we have tried to

do the feature selection using the Gradients in the FF neural

network architecture, followed by applying the LIME model

on the neural network trained over the selected features. The

reason behind the choice of architecture is that we wanted the

model to be comparatively easy to interpret and thus help us

understand the predictions more efficiently. We try to compute

the gradients of the neural network with respect to the input

features, which is the measure of the sensitivity of the output

due to any perturbation in the input.

Next, we implement the LIME model on the neural network

trained on the selected features. This step ensures the dimen-

sionality reduction necessary to eliminate redundant features

for better performance and improve the scope of interpretabil-

ity. In order to tackle the local explanations provided by LIME,

we intend to combine the gradient-based feature selection to

improve the results by evaluating the model’s behavior on a

diverse range of instances and perturbing a selected set of

features. This helps in understanding the pattern and behavior

beyond individual predictions, providing an overview of the

model’s decision-making process and in turn an attempt at

deriving a global explanation using the LIME model.

IV. SIMULATION RESULTS

In this section, we discuss the various performance metrics

of our DNN model for student admissions and provide a

comparative study with the classical ML models. We further

discuss the two DL models, namely FF and ICNN, and the

significance of feature importance in the admissions process.

A. Performance Metrics

We have implemented and trained the FF and the ICNN,

deep learning models on the dataset with 80% used for training

and 20% for testing. We have utilized Python-based PyTorch

[17] as the DL framework and trained the DL models using the

standard backpropagation procedure and included the related

code1. To evaluate the model’s performance we have employed

five types of metrics, namely accuracy, precision, recall, F1-

score, and AUC-ROC score. As opposed to the classical ML

performance in [3] we have successfully been able to show-

case significant improvements in performance using the same

dataset for the student admission problem in our paper. The

1The GitHub repository link can be found at
https://github.com/apriyad1/Deep-Learning-in-Admissions.

(a)

(b)

Figure 2: Confusion matrices for fully-trained deep learning

models, (a) Feed-Forward neural network; (b) Input convex

neural network.

accuracy metric is chosen as one of the performance metrics

obtained by dividing the number of correct predictions by the

total number of records in the dataset, providing a percentage

of correct predictions. Owing to the balanced target class, the

accuracy metric makes for a suitable and reliable measure to

assess model performance. Apart from that, the F1-score and

the recall served as effective metrics for understanding the

DL model performance. The F1-score represents the harmonic

mean of precision and recall, and the recall represents the

proportion of true positive predictions out of all actual positive

instances.

The ICNN and the FF models both seem to achieve an

accuracy of 0.8067, outperforming the classical ML models by

a substantial margin. We have also been able to outperform the

classical ML models by demonstrating higher precision and

F1 scores. As observed from Table I, the ICNN model outper-

forms the FF model on four metrics including precision, recall,

F1-score, and AUC-ROC score, with Accuracy remaining the

same as the FF model employed with PCA. Based on the
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Figure 3: LIME interpretation of the Feed-Forward model predictions. The green and red horizontal bars signify the key features

influencing the overall classification in positive and negative ways respectively.

overall statistics, the ICNN model shows promising results in

solving the student admission decision problem. The superior

performance obtained by the ICNN model can be attributed to

its intrinsic convexity that results in robust and efficient non-

linear decision boundaries in input space. We note that our

simulation results for ICNN conform to the findings of [16]

concerning classification tasks.

In Figure 2 we present the confusion matrices for both

the FF neural network and ICNN models. The confusion

matrix has been provided to give a visual representation

of the models’ relative performance on the test dataset in

predicting admission decisions and thereby evaluating their

metrics. As discussed previously, we have incorporated the

LIME model using the gradient-based approach for under-

standing the feature significance of the Deep neural network

model. This augmentation leverages the gradients of the Feed-

forward neural network model’s output with respect to the

input features to assess their contribution to the predicted

output. We then employ the LIME model to further understand

and differentiate the impact of each selected feature on the test

dataset.

B. Discussion

In this paper, we discuss the usage of a gradient-based

method to initially select the top 20 highly affecting features

from our trained Feed-forward neural network model for

the student admissions problem. Subsequently, applying the

LIME technique to the selected features, we try to analyze

the positive and negative feature impacts on our decision-

making process. Every class of feature is assigned a probability

score based on the possibility of getting chosen. This method

enhances our chance to understand the feature significance in

the decision-making process over a broader aspect and hence

tackle the local interpretability.

As illustrated in Figure 3, the features signifying academic

performance, including GPA, namely the Unweighted and

Weighted GPAs, and performance in AP tests such as the

AP tests total(relative) scores, average AP scores, and AP

CS A score, act as the major key features in influencing

the admission decision process in a positive manner, which

is marked in green. This suggests that students with higher

academic achievement are more likely to be admitted as

opposed to the ones with lesser achievement. The performance

in the AP tests, as shown to influence positively, showcases

student competence in challenging coursework and also re-

flects student’s ability to handle rigorous academic pressure.

Similarly, the high school Landscape score also accounts for

heavily affecting the decision process in a positive manner.

This feature helps the admission decisions to be informed

and equitable by considering an applicant’s accomplishments

within their high school environment mitigating any kind of

unfair bias. Moreover, the PIQ2 Syllable ratio also accounts

for positively affecting admission decisions, providing insights

into the applicant’s communication skills, critical thinking

ability, and writing.

At the same time, certain features are found to impact

the student admission decision process negatively, which are

marked in red. Out of all, the Eligibility in Local Con-

text (ELC) percentage score and the Education Preparation

Programs (EPP) involvement flag have the highest negative

influence on the decision-making process. The ELC score

recognizes the achievements of the top 9% of students from

each high school in California. For example, students with a

value of 1 are the top 1% performers in their high school,

while a 9 means that students are in the top 9% of their class.

Those who are not in the top 9% did not receive an ELC

score and their records were imputed with a value of 10. As

a result, the negative LIME score associated with the ELC

139

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 17,2024 at 21:31:48 UTC from IEEE Xplore.  Restrictions apply. 



feature shows that students who had a higher value, meaning

that they were further away from the top-performing status,

were less likely to be classified as admitted. This ensures a

fair evaluation, considering the opportunities and challenges

faced by the applicant, and promoting equity in the admissions

process.

Continuing on, the EPP flag indicates whether the students

participated in any kind of educational preparation programs

or not. Given our analysis, students who participated in these

programs were less likely to be admitted. Apart from that, the

Total Maths score count, PIQ2 and PIQ3 Flesch-reading scores

also have a negative influence on the decision-making process.

Additionally, we identified a set of features that demonstrate

a negligible effect on admission decisions, including the AP

statistics scores, the AP Physics C score, and the awards flag.

While these features did not exert significant influence indi-

vidually, they still highly contribute to the overall assessment

of an applicant.

Furthermore, the results obtained using the LIME inter-

pretability model in our study are found to be mostly consistent

with the feature coefficients (another way to interpret classical

ML models) derived in [3]. It further validates the influence

and importance of the identified features, reinforcing our

model to be robust and reliable in capturing the key factors

contributing to the applicant evaluation for the undergraduate

admissions process. We note that by highlighting the overall

impact of the features, our study emphasizes on a broad

spectrum including academic aptitude and holistic qualities

while evaluating the applicants for undergraduate student

admissions.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have demonstrated the superior perfor-

mance showcased by the Deep neural network models in

the undergraduate student admission decision-making process.

The ICNN model outperforms the remaining baselines by a

considerable margin, including the classical models. We have

achieved high accuracy in our experiments with both the ICNN

and FF neural network models making them suitable choices

for the task, further affirming their effectiveness. Furthermore,

we have leveraged a gradient-based method coupled with the

LIME model to extract significant features responsible for the

decision process. The approach allowed us to understand the

feature importance and the various types of impact it has on

the admission process.

Through our analysis, we have identified certain key fea-

tures, both positive and negative, that influence the decision-

making process, emphasizing the necessity of a holistic eval-

uation procedure that takes into consideration various factors

beyond academic performance. In summary, the application of

the ML prediction interpretation technique provides valuable

insights that further enable a deeper understanding of the

feature significance and contribute to enhancing transparency,

fairness, and accountability in the admission process. In future

work, we will try to explore anomaly detection to identify

unusual patterns in the admission data that would contribute

towards developing more robust and qualified admission sys-

tems and thereby mitigate any bias or inconsistency in the

decision-making process.
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